The numerical range and numerical radius of derivation operator δA and generalized derivation operator δA,B
Abstract
Abstract. Let H be a Hilbert space equipped with the inner product (,) andA, B, X, Z ∈ H.In this work we study a Now estimates for the numerical radius of the Derivation Operator δA and Generalized Derivation Operator δA,B and the product ZδA, ZδA,B are given, all operators are bounded linear on a complex Hilbert space L(H) .References
Amer. Abu-Omar, Numerical Radius Inequalities for Products of Hilbert Space Operators II, Numerical Functional Analysis and Optimization, VOL. 41, NO. 2, 127133, 2020
J. H. Anderson, Derivations, Commutators, and the Essential Numerical Range, Ph.D. Thesis, Univ. of Indiana, 1971.
J.Anderson, On normal derivations, Proc. Amer. Math. Soc 38(1979), 129-135.
J. Diestel, Geometry of Banach spaces-Selected Topics, Springer, 1975.
Mirman. B. A. (1968). Numerical range and norm of a linear operators. Trudy Sem. Funk. Anal. 10:5155.
Halmos. P. R. (1982). A Hilbert Space Problem Book, 2nd ed., New York: Springer.
S. Mecheri and H. Mecheri, The Gˆateaux derivative and orthogonality in C∞, An. St. Univ. Ovidius Constanta, Vol. 20(1), 2012, 275–284.
Hacene. Mecheri and Rebiai .Belgacem, Birkhoff-James Orthogonality and Best Approximent In L1(X), The Australian Journal of Mathematical Analysis and Applications,Volume 15, Issue 1, Article xx, pp. 1-6, 2018
Hacene. Mecheri and Ibrahim .Omer Ahmed, Some Properties P-Symmetric Operators, Transylvanian Review, Vol XXVII, No. 47, 2020 504-506.
S. Bouah et J. Charles, Extension de la notion doprateur D-symtrique 1, Acts Sci. Math., paratre.
J. P. Williams, On the range of a derivation, Paczfic J. Math. 38:273-279 (1971).
J. P. Wilhams, Diagonalisable normal operators, Proc. Amer. Math. Sec. 54:106-108 (1976).
Copyright (c) 2021 Transylvanian Review
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.